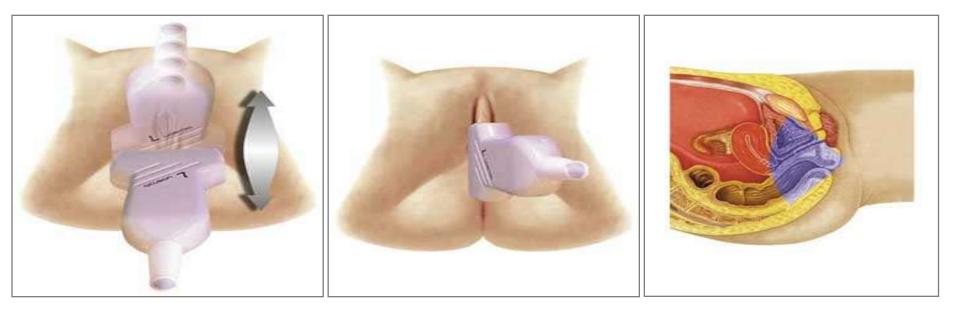
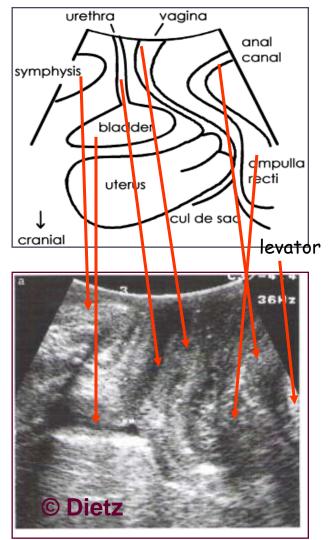


News from the floor מה חדש ברצפת האגן?

Dr. Vered Eisenberg


Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer

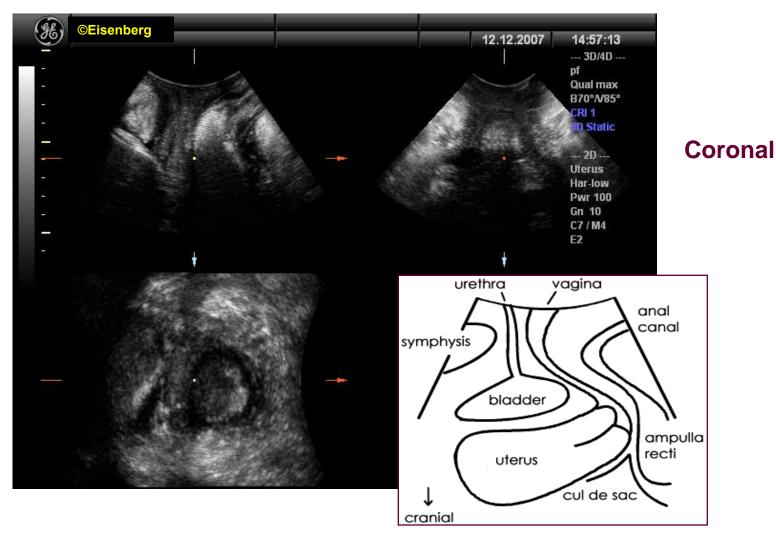
3.5-7 MHz on perineum, mid-sagittal view empty bladder, supine, dorsal lithotomy Rest, Valsalva and Contraction



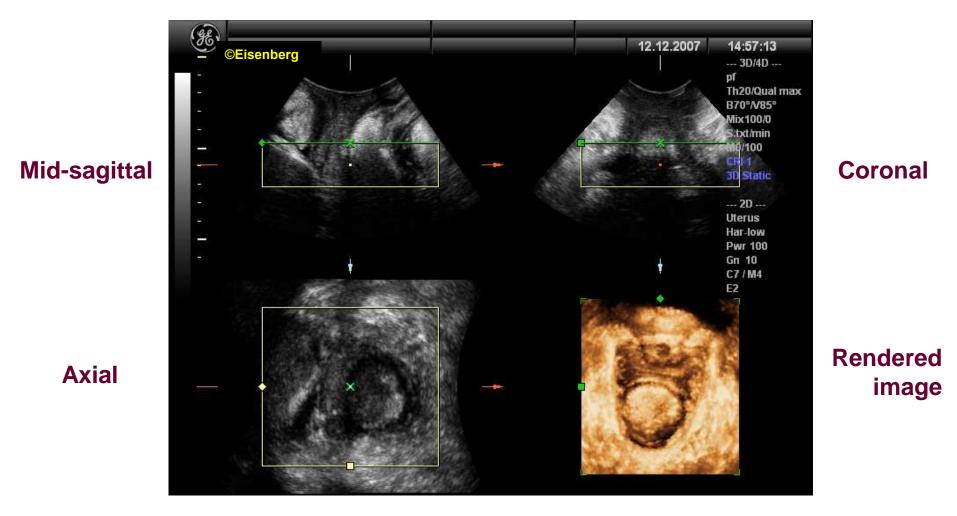
18/02/2010

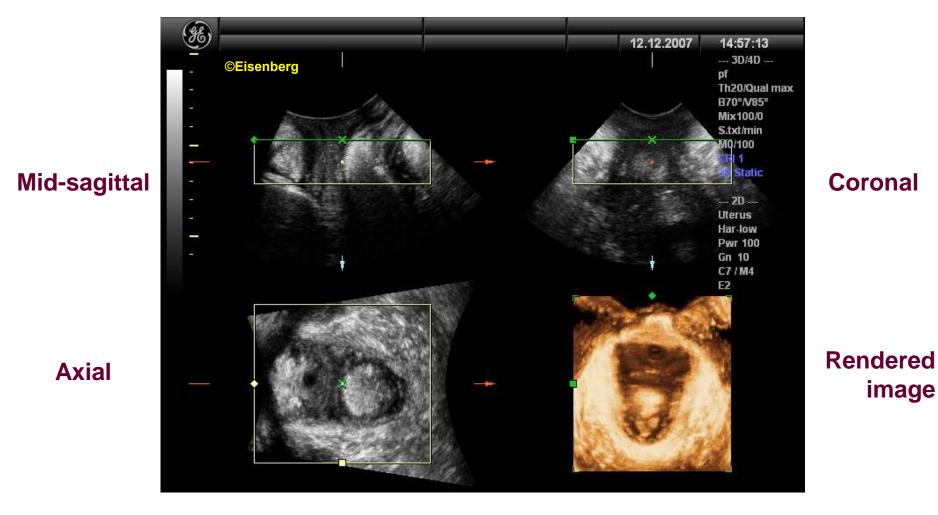
Pelvic floor ultrasound – 2D

- View from anterior to posterior:
 - Symphysis pubis, urethra and bladder neck, vagina, cervix, rectum and anal canal, levator plate (puborectalis muscle)



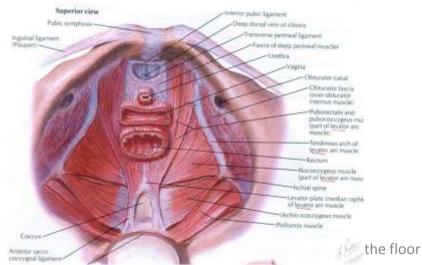
3D - Volume rest sectional planes

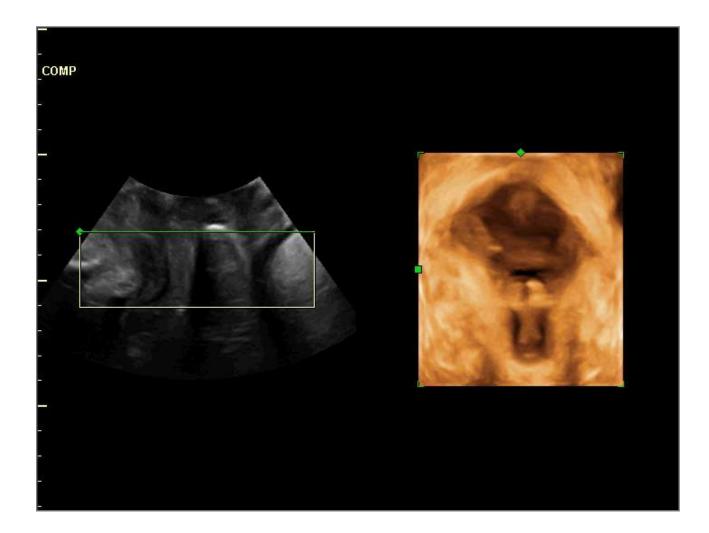

Mid-sagittal



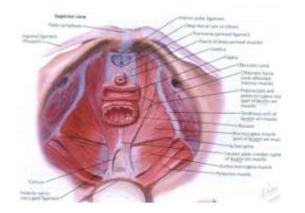
3D - Volume rest render mode

3D - Volume processing




Levator imaging and TUI

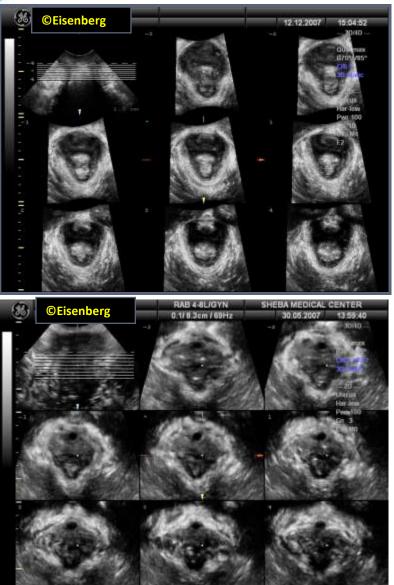
Dynamic transperineal ultrasound – 4D



Levator ani pathology

Levator avulsion defect = puborectalis injury

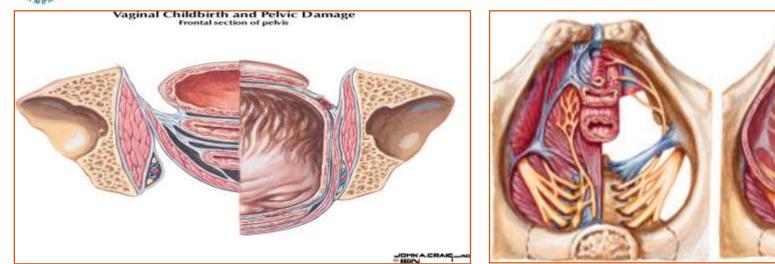
Avulsion of anteromedial aspect of the puborectalis muscle of the pelvic sidewall



News from the floor

18/02/2010

Levator avulsion defect - TUI



News from the floor

18/02/2010

- Skeletal muscle normally tears if stretches by a factor 2
- MRI The levator ani muscle stretches by 2.5 times during NVD (Lien 2004, Hoyte 2008)
- US Levator stretches by 200-1000% depending on elasticity (Svabik 2008)
- A more elastic muscle means a shorter 2nd stage of labor
- The puborectalis muscle tears during crowning
- After tearing the muscle shrinks and retracts
- Scar tissue can bridge a partial tear

Risk factors for levator avulsion

- Vaginal childbirth
- Age at first delivery (10% every year) (Dietz 2005 and 2007, Kearney 2006)
- Instrumental delivery (mainly forceps)
- 3rd and 4th degree tears
- Prolonged 2nd stage (>160-OR 3.5,>180)
- Large fetal weight (>3750,>4000)
- Fetal head circumference (HC≥35.5)
- Both: HC ≥35.5 and 2nd stage ≥110 OR 5.32. (Valsky 2009)
- Genetic factors
- Tissue factors

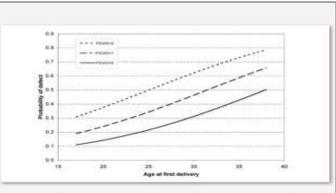
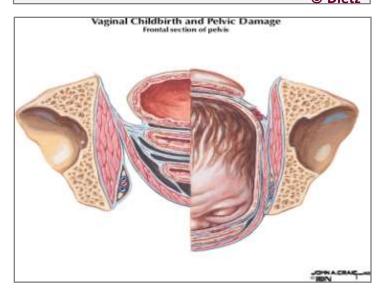
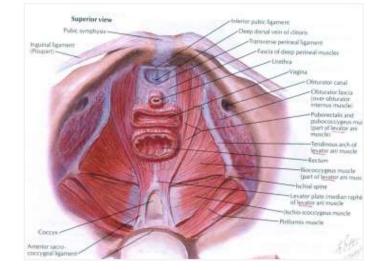



Figure 4: The relationship between maternal age at first delivery and levator trauma. The dotted lines represent the risk of avulsion injury in patients with one or two vaginal operative deliveries (trom: Dietz and Simpson, ANZJOC 2007; 431-435) © Dietz

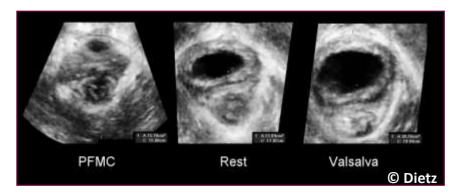
Prevalence of avulsion defect

- 15-25% serious damage (urogyne patients)
- 9% bilateral
- MR and ultrasound studies major levator defects in 20-35% of vaginally parous women (Dietz 2005, DeLancey 2003)
- 50-62% of women after 3rd and 4th degree perineal tears


Dietz

Natural course

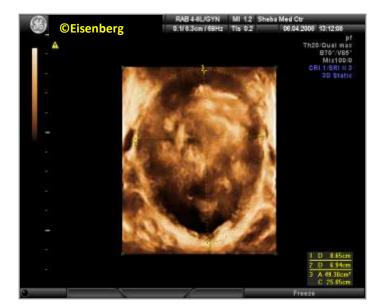
- Many are asymptomatic
- Symptoms may develop over time
- Possible compensation by the iliococcygeus muscle
- Other life style influences take place:
 - Chronic cough (COPD, Asthma)
 - Stool straining
 - Obesity, heavy load carrying
 - Disease states
 - Genetic contribution, connective tissue, etc.
- Poor correlation between damage severity and long term effects


DeLancey NEJM 1993:329:1956-57

Consequences of avulsion injury

- Decreases pelvic floor muscle strength (DeLancey 2007, Abdool 2009)
- Increases size of levator hiatus by 6 cm², 20-30%, in coronal plane, becomes more distensible (50%) and less contractile (Abdool 2009)

 Major levator defects are a risk factor for "ballooning" (an abnormal hiatal area on Valsalva of 25 cm²) (Dietz 2008)


Levator ballooning

- Mild 25-29.9 cm²
- Moderate 30-34.9 cm²
- Marked 35-39.9 cm²
- Severe $\ge 40 \text{ cm}^2$

- (De Leon 2007)
- Relative risk of ballooning:
 - 3.5 unilateral avulsion
 - 3.96 bilateral avulsion
- May be congenital or due to levator 'micro-trauma' rather than actual

tears (Dietz 2009)

Avulsion defect – effect on POP

- The levator hiatus is the largest potential hernial portal in the human body
- Strong risk factor for POP:
 - Cystocele (anterior compartment) RR=2.3
 - Uterine prolapse (central compartment) RR=4.0 (DeLancey 2007, Dietz 2007)
- Width and depth, and # of abnormal slices on TUI correlate with likelihood of prolapse and prolapse symptoms (Dietz 2007)
- Levator avulsion and hiatal ballooning are independent risk factors for POP

POP risk

Olsen et al, Obstet Gynecol, 1997

• Demand for POP surgery will increase by 45% in the next 30 years (Luber 2001)

Significance of avulsion injury

- Risk factor for recurrent or de novo POP after hysterectomy, anti-incontinence and prolapse surgery triples risk (Adekanmi 2005, Dietz 2009, Model 2009)
- Relative risk of 3-4 for cystocele recurrence after anterior colporrhaphy (Dietz 2009)
- Levator assessment can identify patients at high risk of POP recurrence and may be useful as an adjunct in clinical decision making

To mesh or not to mesh: The Urogyne's dilemma

Impact on choice of surgery?

Can levator defects be predicted?

Late diagnosis in a urogynecological patient: (Dietz, ICS 2009)

- Levator defects are most likely to be found on ultrasound in:
 - First child by vaginal operative delivery (RR=2.0) over the age of 30 (RR=2.0)
 - Prolapse symptoms (RR=2.5) w/out concomitant SI
 - Clinical findings:
 - cystocele (RR=3.77-6.51)
 - uterine prolapse (RR=1.63-2.49)
 - strength of a pelvic floor muscle contraction
 - side differences in contraction strength

Cystocele types

Green Type II

Green Type III

Category	Measure	Green type II (n=63)	Green type III (n=39)	P value
Demographics	Age	48.7±13.4	59.4±10.6	<0.001
	Instrumental delivery	20.6%	40.8%	0.013
Symptoms	Stress incontinence	92%	64%	<0.001
	Prolapse sensation	43%	71%	0.004
Ultrasound exam	Cystocele descent	-13.9±9.1mm	-25±14.2mm	<0.001
Urodynamic data	USI	77%	65%	0.133
	Voiding dysfunction	18%	39%	0.018
	Bladder capacity	443±94ml	482±69ml	0.019
Levator parameters	Hiatal area (rest)	17.69±4.25	20.32±5.53	0.014
	Hiatal area (Valsalva)	30.61±7.70	34.19±8.91	0.041
	Hiatal area (PFMC)	14.24±3.30	17.33±5.30	0.003
	Levator avulsion defect	35%	69%	0.001
	Abnormal slices on TUI	3.4±5.7	8.0±6.7	0.001*

Is antenatal prediction possible?

- 367 nullips at 36-38 wks and 4 mos. Postpartum
 - NVD 187 (51%)
 - Instrumental 54 (15%)
 - CS 126 (34%)
- Avulsion rate 34 (14%)
- The only predictor was lower BMI (P=0.005)
- None other from those checked: age, family Hx, hiatal dimensions, BND etc.

Is ultrasound better than other modalities?

- Types of imaging:
 - Radiology
 - CT
 - MRI
 - Video urodynamics
 - Cysto vaginography
 - Defecography

US vs. MRI

- MRI not yet dynamic enough
- Prolapse assessment limited by need for fast acquisition, not widely available
- axial and coronal T2- weighted
- Post-processing
- New US techniques allow better resolution
- Improved tissue discrimination (SRI)

• Limitations of MRI:

- Supine (only)
- Access, price
- Time consuming (30-40 minutes)
- Patient unacceptability
- Spatial resolution lost with rapid acquisition
- Limited use in pregnancy

US vs. defecography

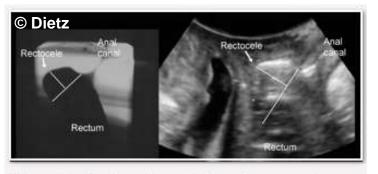


Figure 8: Rectocele on defecation proctography (rotated for easier comparison) and ultrasond in a patient with symptoms of obstructed defecation.

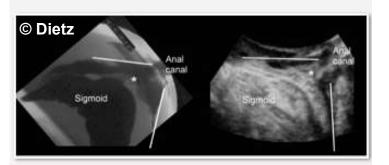
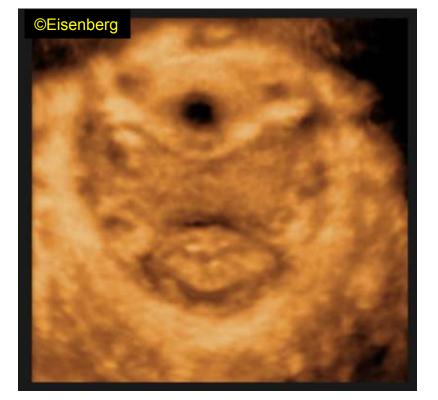



Figure 9: Rectal intussusception (propelled by sigmoid colon) on defecation proctography and ultrasond in a patient with symptoms of obstructed defecation.

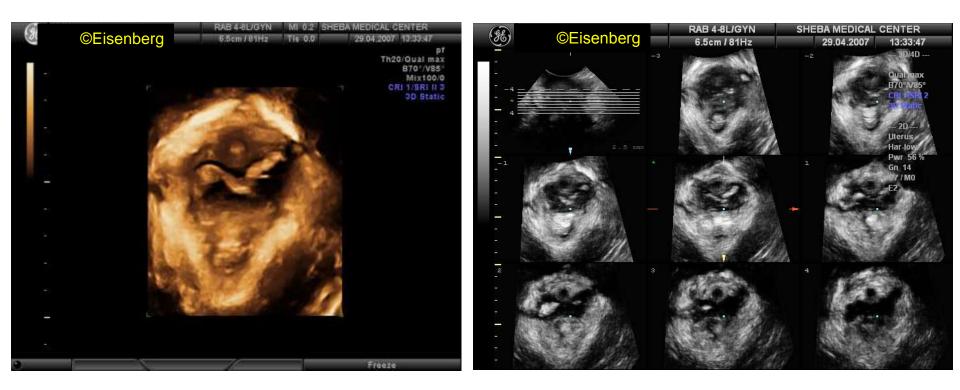
- Evaluation of obstructed defecation:
 - Rectocele, rectal prolapse, perineal descent, rectoanal intussusception (enterocele descending through anal canal)
- Cumbersome, subjective (Zbar 2005)
- High dose radiation
- Contrast material
- Alternative:
 - Dynamic MRI
 - Transperineal US
- Methods show varying agreement but US useful in initial investigation and better tolerated (Perniola 2008, Beer-Gabel 2008)

US vs. defecography


© Eisenberg

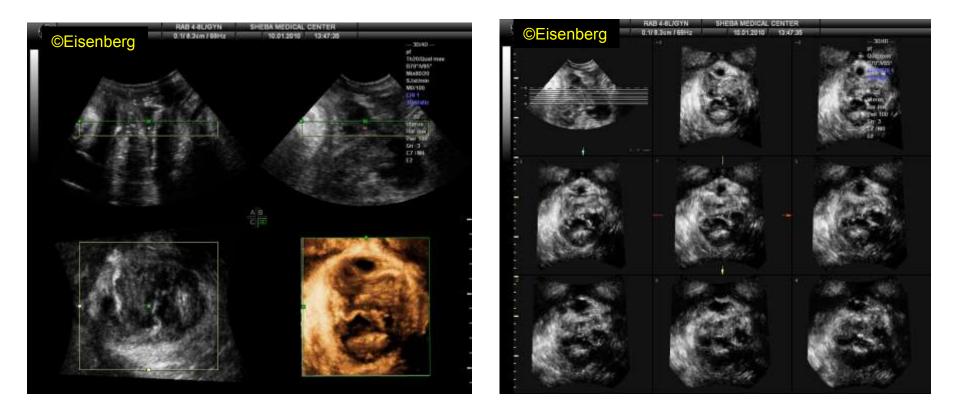
News from the floor

Surgical audit and complications -Suburethral slings and meshes



TVT

Infected TOT


Surgical audit and complications -Suburethral slings and meshes

Folded TOT

Surgical audit and complications -Suburethral slings and meshes

TOT APOGEE collection

News from the floor

Why every pelvic floor surgeon should use pelvic floor ultrasound

- 4D pelvic floor ultrasound is a promising non invasive tool for anatomical and functional evaluation
- Validated
- Availability of advanced US technology
- Easy acceptability by patient
- New diagnostic standard and not just a research tool?
- May enhance specific tailoring of therapeutic options
- Plan individualized surgery
- New surgical frontiers?
- To mesh or not to mesh?

And what can the perinatologist gain from pelvic floor ultrasound

- Evaluation of delivery related pelvic floor trauma (vaginal and perineal tears)
- Learn more about prenatal prevention or screening in high risk cases:
 - Elderly primiparity
 - Macrosomia new standards for low BMI?
 - Instrumental delivery
 - Prolonged second stage (>120?)
 - Prior sphincter laceration what to recommend for repeat deliveries
- Consider when intervention is needed, offer elective C/S?
- Enhance counseling ability
- Prevention methods are helpful (PFE)

Thank you

veredeis@bezeqint.net

http://web.mac.com/hpdietz1/iWeb/Site/Welcome.html